Bounded and compact laws of the logarithm for B-valued random variables
Deli Li
Stochastic Processes and their Applications, 1996, vol. 63, issue 2, 189-209
Abstract:
In this paper, we study a version of the law of the logarithm in a Banach space setting. Some necessary and some sufficient conditions are presented for the law of the logarithm for B-valued random variables. The law of the logarithm, the law of the iterated logarithm and the central limit theorem are shown to be equivalent for finite-dimentional B-valued random variables. However, this statement is not true for infinite-dimensional case. Under the central limit theorem, the law of the logarithm is shown to be equivalent to some certain moment condition. The law of the iterated logarithm implies the law of the logarithm, but the converse is not true. All methods used in this paper are quite standard in probability in Banach spaces except for some modifications. We made an effort to solve this problem completely in a Banach space using both the isoperimetric methods and the Gaussian randomization technique, but we were not successful.
Keywords: 60B12; 60F15; G0G50 (search for similar items in EconPapers)
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(96)00067-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:63:y:1996:i:2:p:189-209
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().