EconPapers    
Economics at your fingertips  
 

Parameter estimation and reverse martingales

Tomas Bjork and Björn Johansson

Stochastic Processes and their Applications, 1996, vol. 63, issue 2, 235-263

Abstract: Within the framework of transitive sufficient processes we investigate identifiability properties of unknown parameters. In particular we consider unbiased parameter estimators, which are shown to be closely connected to time reversal and to reverse martingales. One of the main results is that, within our framework, every unbiased estimator process is a reverse martingale, thus automatically giving us strong consistency results. We also study structural properties of unbiased estimators, and it is shown that the existence of an unbiased parameter estimator is equivalent to the existence of a solution to an inverse boundary value problem. We give explicit representation formulas for the estimators in terms of Feynman-Kac type representations using complex valued diffusions, and we also give Cramér-Rao bounds for the estimation error.

Keywords: Parameter; estimation; Reverse; martingales; Martingale; theory; Diffusions; Time; reversal (search for similar items in EconPapers)
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(96)00080-4
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Parameter Estimation and Reverse Martingales (1995) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:63:y:1996:i:2:p:235-263

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:63:y:1996:i:2:p:235-263