EconPapers    
Economics at your fingertips  
 

Alternative micropulses and fractional Brownian motion

R. Cioczek-Georges and Benoît Mandelbrot

Stochastic Processes and their Applications, 1996, vol. 64, issue 2, 143-152

Abstract: We showed in an earlier paper (1995a) that negatively correlated fractional Brownian motion (FBM) can be generated as a fractal sum of one kind of micropulses (FSM). That is, FBM of exponent is the limit (in the sense of finite-dimensional distributions) of a certain sequence of processes obtained as sums of rectangular pulses. We now show that more general pulses yield a wide range of FBMs: either negatively (as before) or positively () correlated. We begin with triangular (conical and semi-conical) pulses. To transform them into micropulses, the base angle is made to decrease to zero, while the number of pulses, determined by a Poisson random measure, is made to increase to infinity. Then we extend our results to more general pulse shapes.

Keywords: Fractal; sums; of; pulses; Fractal; sums; of; micropulses; Fractional; Brownian; motion; Poisson; random; measure; Self-similarity; Self-affinity; Stationarity; of; increments (search for similar items in EconPapers)
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(96)00089-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:64:y:1996:i:2:p:143-152

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:64:y:1996:i:2:p:143-152