Recuit simulé partiel
Laurent Miclo
Stochastic Processes and their Applications, 1996, vol. 65, issue 2, 281-298
Abstract:
Let (L[theta])[theta][epsilon]N be a family of elliptic diffusion operators on a compact and connected smooth manifold M, whose terms of first order are indexed by a parameter [theta] living in N, the n-dimensional torus. For each fixed [theta], we associate to L[theta] its invariant probability [mu][theta]. Let f be a smooth function on M x N and define for [theta] [epsilon] N, F([theta]) = [integral operator] f(x, [theta])[mu][theta](dx). We study partial simulated annealing algorithms (using only quite directly L[theta] and f) to find the global minima of F. This paper presents a new proof of the convergence of these algorithms, using n + 2 partial entropies associated naturally to the problem. This approach is simpler than the one exposed previously in (Miclo, 1994), which furthermore was restricted to the case n = 1, but we need to speed up much more the diffusion interacting with the simulated annealing algorithm (and in practice, this is embarrassing).Résumé On s'intéresse aux interactions entre des diffusions et des algorithmes de recuit simulé qui permettent de trouver les minima globaux (sur N, le tore de dimension n) de potentiels de la forme F([theta]) = [integral operator] f(x, [theta])[mu][theta](dx) où [mu][theta] est la probabilité invariante associée à une diffusion non dégénérée sur une variété riemannienne compacte et connexe, dont la dérive est paramétrée par [theta] [epsilon] N. On présente une nouvelle démonstration de la convergence de ces algorithmes, plus simple que celle restreinte au cas n = 1 que nous avions déjà exposée dans (Miclo, 1994), car basée sur l'étude des évolutions conjointes de n + 2 entropies partielles associées naturellement au problème. Cependant, cette méthode exige que l'on accélère fortement la diffusion adjointe, ce qui en pratique est génant.
Keywords: Diffusions; interacting; with; simulated; annealing; processes; Evolution; of; partial; entropies (search for similar items in EconPapers)
Date: 1996
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(96)00107-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:65:y:1996:i:2:p:281-298
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().