On recursive estimation for hidden Markov models
Tobias Rydén
Stochastic Processes and their Applications, 1997, vol. 66, issue 1, 79-96
Abstract:
Hidden Markov models (HMMs) have during the last decade become a widespread tool for modelling sequences of dependent random variables. In this paper we consider a recursive estimator for HMMs based on the m-dimensional distribution of the process and show that this estimator converges to the set of stationary points of the corresponding Kullback-Leibler information. We also investigate averaging in this recursive scheme and show that conditional on convergence to the true parameter, and provided m is chosen large enough, the averaged estimator is close to optimal.
Keywords: Hidden; Markov; model; Incomplete; data; Missing; data; Recursive; estimation; Stochastic; approximation; Poisson; equation (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(96)00114-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:66:y:1997:i:1:p:79-96
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().