A central limit theorem for linear Kolmogorov's birth-growth models
S. N. Chiu
Stochastic Processes and their Applications, 1997, vol. 66, issue 1, 97-106
Abstract:
A Poisson process in space-time is used to generate a linear Kolmogorov's birth-growth model. Points start to form on [0,L] at time zero. Each newly formed point initiates two bidirectional moving frontiers of constant speed. New points continue to form on not-yet passed over parts of [0,L]. The whole interval will eventually be passed over by the moving frontiers. Let NL be the total number of points formed. Quine and Robinson (1990) showed that if the Poisson process is homogeneous in space-time, the distribution of (NL - E[NL])/[radical sign]var[NL] converges weakly to the standard normal distribution. In this paper a simpler argument is presented to prove this asymptotic normality of NL for a more general class of linear Kolmogorov's birth-growth models.
Keywords: Central; limit; theorem; Coverage; Inhomogeneous; Poisson; process; Johnson-Mehl; tessellation; Kolmogorov's; birth-growth; model (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(96)00113-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:66:y:1997:i:1:p:97-106
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().