Dynamic Boolean models
J. van den Berg,
Ronald Meester and
Damien G. White
Stochastic Processes and their Applications, 1997, vol. 69, issue 2, 247-257
Abstract:
Consider an ordinary Boolean model, that is, a homogeneous Poisson point process in Rd, where the points are all centres of random balls with i.i.d. radii. Now let these points move around according to i.i.d. stochastic processes. It is not hard to show that at each fixed time t we again have a Boolean model with the original distribution. Hence if the original model is supercritical then, for any t, the probability of having an unbounded occupied component at time t equals 1. We show that under mild conditions on the dynamics (e.g. for Brownian motion) we can interchange the quantifiers in the above statement, namely: if the original model is supercritical, then the probability of having an unbounded occupied component for all t simultaneously equals 1. Roughly analogous statements are valid for the subcritical regime, under some further mild conditions.
Date: 1997
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00044-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:69:y:1997:i:2:p:247-257
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().