Normalizing constants for branching processes in random environments (B.P.R.E.)
David Tanny
Stochastic Processes and their Applications, 1978, vol. 6, issue 2, 201-211
Abstract:
Normalizing constants are obtained for B.P.R.E. such that the limiting random variable is finite almost everywhere and is zero only on the extinction set of the process w.p.1. Furthermore, the normalizing constants can be chosen so that they grow exponentially fast, and so that the ratio of successive constants converges in distribution. The method of proof used is to prove the result for increasing branching processes, and then, to transfer the result to general B.P.R.E. by employing the relationships between B.P.R.E., the associated B.P.R.E., and the reduced branching process.
Keywords: Primary; 60J80; Secondary; 60F15 (search for similar items in EconPapers)
Date: 1978
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(78)90061-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:6:y:1978:i:2:p:201-211
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().