Stochastic evolution equations with a spatially homogeneous Wiener process
Szymon Peszat and
Jerzy Zabczyk
Stochastic Processes and their Applications, 1997, vol. 72, issue 2, 187-204
Abstract:
A semilinear parabolic equation on d with a non-additive random perturbation is studied. The noise is supposed to be a spatially homogeneous Wiener process. Conditions for the existence and uniqueness of the solution in terms of the spectral measure of the noise are given. Applications to population and geophysical models are indicated. The Freidlin-Wentzell large deviation estimates are obtained as well.
Keywords: Stochastic; partial; differential; equations; Homogeneous; Wiener; process; Random; environment; Large; deviation; principle (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00089-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:72:y:1997:i:2:p:187-204
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().