EconPapers    
Economics at your fingertips  
 

Convergence of moderately interacting particle systems to a diffusion-convection equation

B. Jourdain

Stochastic Processes and their Applications, 1998, vol. 73, issue 2, 247-270

Abstract: We give a probabilistic interpretation of the solution of a diffusion-convection equation. To do so, we define a martingale problem in which the drift coefficient is nonlinear and unbounded for small times whereas the diffusion coefficient is constant. We check that the time marginals of any solution are given by the solution of the diffusion-convection equation. Then we prove existence and uniqueness for the martingale problem and obtain the solution as the propagation of chaos limit of a sequence of moderately interacting particle systems.

Keywords: Nonlinear; martingale; problem; Propagation; of; chaos; Particle; systems; Moderate; interaction; Diffusion-convection; equation (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00111-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:73:y:1998:i:2:p:247-270

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:73:y:1998:i:2:p:247-270