Selecting the optimal sample fraction in univariate extreme value estimation
Holger Drees and
Edgar Kaufmann
Stochastic Processes and their Applications, 1998, vol. 75, issue 2, 149-172
Abstract:
In general, estimators of the extreme value index of i.i.d. random variables crucially depend on the sample fraction that is used for estimation. In case of the well-known Hill estimator the optimal number knopt of largest order statistics was given by Hall and Welsh (1985) as a function of some parameters of the unknown distribution function F, which was assumed to admit a certain expansion. Moreover, an estimator of knopt was proposed that is consistent if a second-order parameter [rho] of F belongs to a bounded interval. In contrast, we introduce a sequential procedure that yields a consistent estimator of knopt in the full model without requiring prior information about [rho]. Then it is demonstrated that even in a more general setup the resulting adaptive Hill estimator is asymptotically as efficient as the Hill estimator based on the optimal number of order statistics. Finally, it is shown by Monte Carlo simulations that also for moderate sample sizes the procedure shows a reasonable performance, which can be improved further if [rho] is restricted to bounded intervals.
Keywords: Adaptive; estimation; Asymptotic; efficiency; Extreme; value; index; Hill; estimator; Optimal; sample; fraction; Order; statistics; Sequential; procedure (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (66)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(98)00017-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:75:y:1998:i:2:p:149-172
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().