Connections between optimal stopping and singular stochastic control
Frederik Boetius and
Michael Kohlmann
Stochastic Processes and their Applications, 1998, vol. 77, issue 2, 253-281
Abstract:
We consider an optimal control problem for an Itô diffusion and a related stopping problem. Their value functions satisfy (d/dx)V=u and an optimal control defines an optimal stopping time. Conversely, we construct an optimal control from optimal stopping times, find a representation of V as an integral of u and describe the optimal state as a reflected process.
Keywords: Singular; control; Optimal; stopping; Impulse; control; Local; times; Irreversible; investment; Options (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(98)00049-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:77:y:1998:i:2:p:253-281
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().