Speed of convergence to equilibrium and to normality for diffusions with multiple periodic scales
Rabi Bhattacharya,
Manfred Denker and
Alok Goswami
Stochastic Processes and their Applications, 1999, vol. 80, issue 1, 55-86
Abstract:
The present article analyses the large-time behavior of a class of time-homogeneous diffusion processes whose spatially periodic dynamics, although time independent, involve a large spatial parameter 'a'. This leads to phase changes in the behavior of the process as time increases through different time zones. At least four different temporal regimes can be identified: an initial non-Gaussian phase for times which are not large followed by a first Gaussian phase, which breaks down over a subsequent region of time, and a final Gaussian phase different from the earlier phases. The first Gaussian phase occurs for times 1 > a2 log a; or, it may take an enormous amount of time t >> exp{ca} for some c>0. An estimation of the speed of convergence to equilibrium of diffusions on a circle of circumference 'a' is provided for the above analysis.
Keywords: Diffusions; Periodic; coefficients; Spectral; gaps; Gaussian; approximation (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(98)00069-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:80:y:1999:i:1:p:55-86
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().