Moderate deviations for randomly perturbed dynamical systems
F. C. Klebaner and
R. Liptser
Stochastic Processes and their Applications, 1999, vol. 80, issue 2, 157-176
Abstract:
A Moderate Deviation Principle is established for random processes arising as small random perturbations of one-dimensional dynamical systems of the form Xn=f(Xn-1). Unlike in the Large Deviations Theory the resulting rate function is independent of the underlying noise distribution, and is always quadratic. This allows one to obtain explicit formulae for the asymptotics of probabilities of the process staying in a small tube around the deterministic system. Using these, explicit formulae for the asymptotics of exit times are obtained. Results are specified for the case when the dynamical system is periodic, and imply stability of such systems. Finally, results are applied to the model of density-dependent branching processes.
Keywords: Large; deviations; Moderate; deviations; Markov; chains; Periodic; and; chaotic; systems; Density-dependent; branching; processes (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(98)00075-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:80:y:1999:i:2:p:157-176
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().