Bounds on regeneration times and convergence rates for Markov chains
G. O. Roberts and
R. L. Tweedie
Stochastic Processes and their Applications, 1999, vol. 80, issue 2, 211-229
Abstract:
In many applications of Markov chains, and especially in Markov chain Monte Carlo algorithms, the rate of convergence of the chain is of critical importance. Most techniques to establish such rates require bounds on the distribution of the random regeneration time T that can be constructed, via splitting techniques, at times of return to a "small set" C satisfying a minorisation condition P(x,·)[greater-or-equal, slanted][var epsilon][phi](·), x[set membership, variant]C. Typically, however, it is much easier to get bounds on the time [tau]C of return to the small set itself, usually based on a geometric drift function , where . We develop a new relationship between T and [tau]C, and this gives a bound on the tail of T, based on [var epsilon],[lambda] and b, which is a strict improvement on existing results. When evaluating rates of convergence we see that our bound usually gives considerable numerical improvement on previous expressions.
Keywords: Renewal; times; Geometric; ergodicity; Rates; of; convergence; Markov; chain; Monte; Carlo; Shift; coupling; Computable; bounds (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(98)00085-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:80:y:1999:i:2:p:211-229
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().