EconPapers    
Economics at your fingertips  
 

A note on branching Lévy processes

A. E. Kyprianou

Stochastic Processes and their Applications, 1999, vol. 82, issue 1, 1-14

Abstract: We show for the branching Lévy process that it is possible to construct two classes of multiplicative martingales using stopping lines and solutions to one of two source equations. The first class, similar to those martingales of Chauvin (1991, Ann. Probab. 30, 1195-1205) and Neveu (1988, Seminar on Stochastic Processes 1987, Progress in Probability and Statistics, vol. 15, Birkhaüser, Boston, pp. 223-241) have a source equation which provides travelling wave solutions to a generalized version of the K-P-P equation. For the second class of martingales, similar to those of Biggins and Kyprianou (1997, Ann. Probab. 25, 337-360), the source equation is a functional equation. We show further that under reasonably broad circumstances, these equations share the same solutions and hence the two types of martingales are one and the same. This conclusion also tells us something more about the nature of the solutions to the first of our two equations.

Keywords: Branching; Lévy; processes; Functional; equations; Multiplicative; martingales; K-P-P; equation; Travelling; wave; solutions (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00010-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:82:y:1999:i:1:p:1-14

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:82:y:1999:i:1:p:1-14