EconPapers    
Economics at your fingertips  
 

Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks

Quansheng Liu

Stochastic Processes and their Applications, 1999, vol. 82, issue 1, 61-87

Abstract: Let (Z(t): t[greater-or-equal, slanted]0) be a supercritical age-dependent branching process and let {Yn} be the natural martingale arising in a homogeneous branching random walk. Let Z be the almost sure limit of Z(t)/EZ(t)(t-->[infinity]) or that of Yn (n-->[infinity]). We study the following problems: (a) the absolute continuity of the distribution of Z and the regularity of the density function; (b) the decay rate (polynomial or exponential) of the left tail probability P(Z[less-than-or-equals, slant]x) as x-->0, and that of the characteristic function EeitZ and its derivative as t-->[infinity]; (c) the moments and decay rate (polynomial or exponential) of the right tail probability P(Z>x) as x-->[infinity], the analyticity of the characteristic function [phi](t)=EeitZ and its growth rate as an entire characteristic function. The results are established for non-trivial solutions of an associated functional equation, and are therefore also applicable for other limit variables arising in age-dependent branching processes and in homogeneous branching random walks.

Keywords: Age-dependent; branching; processes; Branching; random; walks; Martingales; Functional; equation; Absolute; continuity; Moments; of; negative; orders; Left; tails; Moments; Exponential; moments; Right; tail; Decay; rate; and; analiticity; of; characteristic; function; Growth; order; of; entire; characteristic; function (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00008-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:82:y:1999:i:1:p:61-87

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:82:y:1999:i:1:p:61-87