Detection of multiple changes in a sequence of dependent variables
Marc Lavielle
Stochastic Processes and their Applications, 1999, vol. 83, issue 1, 79-102
Abstract:
We present some results of convergence for a minimum contrast estimator in a problem of change-points estimation. Here, we consider that the changes affect the marginal distribution of a sequence of random variables. We only consider parametric models, but the results are obtained under very general conditions. We show that the estimated configuration of changes converges to the true configuration, and we show that the rate of convergence does not depend on the dependance structure of the process: we obtain the same rate for strongly mixing and strongly dependent processes. When the number of changes is unknown, it is estimated by minimizing a penalized contrast function. Some examples of application to real data are given.
Keywords: Detection; of; change-points; Minimum; contrast; estimator; Penalized; minimum; contrast; estimator; Strongly; mixing; processes; Strongly; dependent; processes (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00023-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:83:y:1999:i:1:p:79-102
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().