Tightness of localization and return time in random environment
Yueyun Hu
Stochastic Processes and their Applications, 2000, vol. 86, issue 1, 81-101
Abstract:
Consider a class of diffusions with random potentials which behave asymptotically as Brownian motion. We study the tightness of localization around the bottom of some Brownian valley, and determine the limit distribution of the return time to the origin after a typical time. Via the Skorokhod embedding in random environment, we also solve the return time problem for Sinai's walk.
Keywords: Tightness; of; localization; Return; time; Valley; Diffusion; with; random; potential; Sinai's; walk; in; random; environment (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00087-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:86:y:2000:i:1:p:81-101
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().