EconPapers    
Economics at your fingertips  
 

Malliavin calculus for parabolic SPDEs with jumps

Nicolas Fournier

Stochastic Processes and their Applications, 2000, vol. 87, issue 1, 115-147

Abstract: We study a parabolic SPDE driven by a white noise and a compensated Poisson measure. We first define the solutions in a weak sense, and we prove the existence and the uniqueness of a weak solution. Then we use the Malliavin calculus in order to show that under some non-degeneracy assumptions, the law of the weak solution admits a density with respect to the Lebesgue measure. To this aim, we introduce two derivative operators associated with the white noise and the Poisson measure. The one associated with the Poisson measure is studied in detail.

Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00107-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:87:y:2000:i:1:p:115-147

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:87:y:2000:i:1:p:115-147