Extinction properties of super-Brownian motions with additional spatially dependent mass production
János Engländer and
Klaus Fleischmann
Stochastic Processes and their Applications, 2000, vol. 88, issue 1, 37-58
Abstract:
Consider the finite measure-valued continuous super-Brownian motion X on corresponding to the log-Laplace equation where the coefficient [beta](x) for the additional mass production varies in space, is Hölder continuous, and bounded from above. We prove criteria for (finite time) extinction and local extinction of X in terms of [beta]. There exists a threshold decay rate kdx-2 as x-->[infinity] such that X does not become extinct if [beta] is above this threshold, whereas it does below the threshold (where for this case [beta] might have to be modified on a compact set). For local extinction one has the same criterion, but in dimensions d>6 with the constant kd replaced by Kd>kd (phase transition). h-transforms for measure-valued processes play an important role in the proofs. We also show that X does not exhibit local extinction in dimension 1 if [beta] is no longer bounded from above and, in fact, degenerates to a single point source [delta]0. In this case, its expectation grows exponentially as t-->[infinity].
Keywords: Measure-valued; process; Superdiffusion; Superprocess; Extinction; Local; extinction; Branching; h-Transform; Non-regular; coefficients; Single; point; source; Threshold; rate; Phase; transition (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00118-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:88:y:2000:i:1:p:37-58
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().