Direct characterization of the value of super-replication under stochastic volatility and portfolio constraints
Nizar Touzi
Stochastic Processes and their Applications, 2000, vol. 88, issue 2, 305-328
Abstract:
We study the problem of minimal initial capital needed in order to hedge a European contingent claim without risk. The financial market presents incompleteness arising from two sources: stochastic volatility and portfolio constraints described by a closed convex set. In contrast with previous literature which uses the dual formulation of the problem, we use an original dynamic programming principle stated directly on the initial problem, as in Soner and Touzi (1998. SIAM J. Control Optim.; 1999. Preprint). We then recover all previous known results under weaker assumptions and without appealing to the dual formulation. We also prove a new characterization result of the value of super-replication as the unique continuous viscosity solution of the associated Hamilton-Jacobi-Bellman equation with a suitable terminal condition.
Keywords: Stochastic; control; Viscosity; solutions; Super-replication; problem; Stochastic; volatility; Portfolio; constraints (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00007-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:88:y:2000:i:2:p:305-328
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().