EconPapers    
Economics at your fingertips  
 

Chaotic and predictable representations for Lévy processes

David Nualart and Wim Schoutens

Stochastic Processes and their Applications, 2000, vol. 90, issue 1, 109-122

Abstract: The only normal martingales which posses the chaotic representation property and the weaker predictable representation property and which are at the same time also Lévy processes, are in essence Brownian motion and the compensated Poisson process. For a general Lévy process (satisfying some moment conditions), we introduce the power jump processes and the related Teugels martingales. Furthermore, we orthogonalize the Teugels martingales and show how their orthogonalization is intrinsically related with classical orthogonal polynomials. We give a chaotic representation for every square integral random variable in terms of these orthogonalized Teugels martingales. The predictable representation with respect to the same set of orthogonalized martingales of square integrable random variables and of square integrable martingales is an easy consequence of the chaotic representation.

Keywords: Lévy; processes; Martingales; Stochastic; integration; Orthogonal; polynomials (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00035-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:90:y:2000:i:1:p:109-122

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:90:y:2000:i:1:p:109-122