Recurrence and transience of multitype branching random walks
F. P. Machado,
M. V. Menshikov and
S. Yu. Popov
Stochastic Processes and their Applications, 2001, vol. 91, issue 1, 21-37
Abstract:
We study a discrete time Markov process with particles being able to perform discrete time random walks and create new particles, known as branching random walk (BRW). We suppose that there are particles of different types, and the transition probabilities, as well as offspring distribution, depend on the type and the position of the particle. Criteria of (strong) recurrence and transience are presented, and some applications (spatially homogeneous case, Lamperti BRW, many-dimensional BRW) are studied.
Keywords: Multitype; branching; random; walk; Strong; transience; Strong; recurrence (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00055-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:91:y:2001:i:1:p:21-37
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().