EconPapers    
Economics at your fingertips  
 

Stationary self-similar random fields on the integer lattice

Zhiyi Chi

Stochastic Processes and their Applications, 2001, vol. 91, issue 1, 99-113

Abstract: We establish several methods for constructing stationary self-similar random fields (ssf's) on the integer lattice by "random wavelet expansion", which stands for representation of random fields by sums of randomly scaled and translated functions, or more generally, by composites of random functionals and deterministic wavelet expansion. To construct ssf's on the integer lattice, random wavelet expansion is applied to the indicator functions of unit cubes at integer sites. We demonstrate how to construct Gaussian, symmetric stable, and Poisson ssf's by random wavelet expansion with mother wavelets having compact support or non-compact support. We also generalize ssf's to stationary random fields which are invariant under independent scaling along different coordinate axes. Finally, we investigate the construction of ssf's by combining wavelet expansion and multiple stochastic integrals.

Keywords: Stationary; self-similar; Random; wavelet; expansion; Multiple; stochastic; integral; Invariance; under; independent; scaling (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00051-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:91:y:2001:i:1:p:99-113

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:91:y:2001:i:1:p:99-113