Generalizations of bold play in red and black
Marcus Pendergrass and
Kyle Siegrist
Stochastic Processes and their Applications, 2001, vol. 92, issue 1, 163-180
Abstract:
The strategy of bold play in the game of red and black leads to a number of interesting mathematical properties: the player's fortune follows a deterministic map, before the transition that ends the game; the bold strategy can be "re-scaled" to produce new strategies with the same win probability; the win probability is a continuous function of the initial fortune, and in the fair case, equals the initial fortune. We consider several Markov chains in more general settings and study the extent to which the properties are preserved. In particular, we study two "k-player" models.
Keywords: Red; and; black; Bold; play; Markov; chain; Hitting; time (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00069-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:92:y:2001:i:1:p:163-180
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().