Drift conditions and invariant measures for Markov chains
R. L. Tweedie
Stochastic Processes and their Applications, 2001, vol. 92, issue 2, 345-354
Abstract:
We consider the classical Foster-Lyapunov condition for the existence of an invariant measure for a Markov chain when there are no continuity or irreducibility assumptions. Provided a weak uniform countable additivity condition is satisfied, we show that there are a finite number of orthogonal invariant measures under the usual drift criterion, and give conditions under which the invariant measure is unique. The structure of these invariant measures is also identified. These conditions are of particular value for a large class of non-linear time series models.
Keywords: Invariant; measures; Stationary; measures; Foster-Lyapunov; criteria; Irreducibility; Positive; recurrence; Ergodicity; Drift; conditions; Harris; sets; Doeblin; decompositions (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00085-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:92:y:2001:i:2:p:345-354
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().