Stochastic viscosity solutions for nonlinear stochastic partial differential equations. Part II
Rainer Buckdahn and
Jin Ma
Stochastic Processes and their Applications, 2001, vol. 93, issue 2, 205-228
Abstract:
This paper is a continuation of our previous work (Part I, Stochastic Process. Appl. 93 (2001) 181-204), with the main purpose of establishing the uniqueness of the stochastic viscosity solution introduced there. We shall prove a comparison theorem between a stochastic viscosity solution and an [omega]-wise stochastic viscosity solution, which will lead to the uniqueness results. As the byproducts we extend the measurable section theorem of Dellacherie and Meyer (1978), and a fundamental lemma of Crandall et al. (1992)
Keywords: Stochastic; PDEs; Stochastic; viscosity; solutions; Uniqueness; (Optional); section; theorem (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00092-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:93:y:2001:i:2:p:205-228
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().