Asymptotic properties and absolute continuity of laws stable by random weighted mean
Quansheng Liu
Stochastic Processes and their Applications, 2001, vol. 95, issue 1, 83-107
Abstract:
We study properties of stable-like laws, which are solutions of the distributional equation where (N,A1,A2,...) is a given random variable with values in {0,1,...}x[0,[infinity])x[0,[infinity])x..., and Z,Z1,Z2,... are identically distributed positive random variables, independent of each other and independent of (N,A1,A2,...). Examples of such laws contain the laws of the well-known limit random variables in: (a) the Galton-Watson process or general branching processes, (b) branching random walks, (c) multiplicative processes, and (d) smoothing processes. For any solution Z (with finite or infinite mean), we find asymptotic properties of the distribution function P(Z[less-than-or-equals, slant]x) and those of the characteristic function EeitZ; we prove that the distribution of Z is absolutely continuous on (0,[infinity]), and that its support is the whole half-line [0,[infinity]). Solutions which are not necessarily positive are also considered.
Keywords: Multiplicative; cascades; Branching; processes; Crump-Mode-Jagers; Branching; random; walks; Smoothing; processes; Martingales; Functional; equations; Moments; of; negative; orders; Left; tails; Decay; rate; of; characteristic; function; Absolute; continuity; Support (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00092-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:95:y:2001:i:1:p:83-107
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().