Lyapunov exponents of nilpotent Itô systems with random coefficients
Peter H. Baxendale and
Levon Goukasian
Stochastic Processes and their Applications, 2001, vol. 95, issue 2, 219-233
Abstract:
The paper considers the top Lyapunov exponent of a two-dimensional linear stochastic differential equation. The matrix coefficients are assumed to be functions of an independent recurrent Markov process, and the system is a small perturbation of a nilpotent system. The main result gives the asymptotic behavior of the top Lyapunov exponent as the perturbation parameter tends to zero. This generalizes a result of Pinsky and Wihstutz for the constant coefficient case.
Keywords: Stochastic; differential; equation; Nilpotent; system; Lyapunov; exponent; Stochastic; averaging; Exponential; ergodicity (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00091-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:95:y:2001:i:2:p:219-233
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().