Brownian analogues of Burke's theorem
Neil O'Connell and
Marc Yor
Stochastic Processes and their Applications, 2001, vol. 96, issue 2, 285-304
Abstract:
We discuss Brownian analogues of a celebrated theorem, due to Burke, which states that the output of a (stable, stationary) M/M/1 queue is Poisson, and the related notion of quasireversibility. A direct analogue of Burke's theorem for the Brownian queue was stated and proved by Harrison (Brownian Motion and Stochastic Flow Systems, Wiley, New York, 1985). We present several different proofs of this and related results. We also present an analogous result for geometric functionals of Brownian motion. By considering series of queues in tandem, these theorems can be applied to a certain class of directed percolation and directed polymer models. It was recently discovered that there is a connection between this directed percolation model and the GUE random matrix ensemble. We extend and give a direct proof of this connection in the two-dimensional case. In all of the above, reversibility plays a key role.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00119-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:96:y:2001:i:2:p:285-304
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().