EconPapers    
Economics at your fingertips  
 

The Azéma-Yor embedding in non-singular diffusions

J. L. Pedersen and G. Peskir

Stochastic Processes and their Applications, 2001, vol. 96, issue 2, 305-312

Abstract: Let (Xt)t[greater-or-equal, slanted]0 be a non-singular (not necessarily recurrent) diffusion on starting at zero, and let [nu] be a probability measure on Necessary and sufficient conditions are established for [nu] to admit the existence of a stopping time [tau]* of (Xt) solving the Skorokhod embedding problem, i.e. X[tau]* has the law [nu]. Furthermore, an explicit construction of [tau]* is carried out which reduces to the Azéma-Yor construction (Séminaire de Probabilités XIII, Lecture Notes in Mathematics, Vol. 721, Springer, Berlin, p. 90) when the process is a recurrent diffusion. In addition, this [tau]* is characterized uniquely to be a pointwise smallest possible embedding that stochastically maximizes (minimizes) the maximum (minimum) process of (Xt) up to the time of stopping.

Keywords: The; Skorokhod; embedding; problem; Non-singular; diffusion; Non-recurrent; Time-change; Azema-Yor; embedding; Barycentre; function; Maximum/minimum; process (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00120-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:96:y:2001:i:2:p:305-312

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:96:y:2001:i:2:p:305-312