Adaptive estimation of mean and volatility functions in (auto-)regressive models
F. Comte and
Y. Rozenholc
Stochastic Processes and their Applications, 2002, vol. 97, issue 1, 111-145
Abstract:
In this paper, we study the problem of nonparametric estimation of the mean and variance functions b and [sigma]2 in a model: Xi+1=b(Xi)+[sigma](Xi)[var epsilon]i+1. For this purpose, we consider a collection of finite dimensional linear spaces. We estimate b using a mean squares estimator built on a data driven selected linear space among the collection. Then an analogous procedure estimates [sigma]2, using a possibly different collection of models. Both data driven choices are performed via the minimization of penalized mean squares contrasts. The penalty functions are random in order not to depend on unknown variance-type quantities. In all cases, we state nonasymptotic risk bounds in empirical norm for our estimators and we show that they are both adaptive in the minimax sense over a large class of Besov balls. Lastly, we give the results of intensive simulation experiments which show the good performances of our estimator.
Keywords: Nonparametric; regression; Least-squares; estimator; Adaptive; estimation; Autoregression; Variance; estimation; Mixing; processes (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00128-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:97:y:2002:i:1:p:111-145
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().