Robustness of the nonlinear filter: the correlated case
Abhay G. Bhatt and
Rajeeva L. Karandikar
Stochastic Processes and their Applications, 2002, vol. 97, issue 1, 41-58
Abstract:
We consider the question of robustness of the optimal nonlinear filter when the signal process X and the observation noise are possibly correlated. The signal X and observations Y are given by a SDE where the coefficients can depend on the entire past. Using results on pathwise solutions of stochastic differential equations we express X as a functional of two independent Brownian motions under the reference probability measure P0. This allows us to write the filter [pi] as a ratio of two expectations. This is the main step in proving robustness. In this framework we show that when (Xn,Yn) converge to (X,Y) in law, then the corresponding filters also converge in law. Moreover, when the signal and observation processes converge in probability, so do the filters. We also prove that the paths of the filter are continuous in this framework.
Keywords: Nonlinear; filtering; Correlated; signal; and; noise; Robustness; Pathwise; formulae; for; SDE (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00121-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:97:y:2002:i:1:p:41-58
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().