The FEXP estimator for potentially non-stationary linear time series
Clifford Hurvich,
Eric Moulines and
Philippe Soulier
Stochastic Processes and their Applications, 2002, vol. 97, issue 2, 307-340
Abstract:
We consider semiparametric fractional exponential (FEXP) estimators of the memory parameter d for a potentially non-stationary linear long-memory time series with additive polynomial trend. We use differencing to annihilate the polynomial trend, followed by tapering to handle the potential non-invertibility of the differenced series. We propose a method of pooling the tapered periodogram which leads to more efficient estimators of d than existing pooled, tapered estimators. We establish asymptotic normality of the tapered FEXP estimator in the Gaussian case with or without pooling. We establish asymptotic normality of the estimator in the linear case if pooling is used. Finally, we consider minimax rate-optimality and feasible nearly rate-optimal estimators in the Gaussian case.
Keywords: Long memory Fractional exponential models Periodogram; Semiparametric estimation; Tapering; Bartlett decomposition; Minimax rate-optimality (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00136-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:97:y:2002:i:2:p:307-340
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().