One-shot coupling for certain stochastic recursive sequences
Gareth O. Roberts and
Jeffrey S. Rosenthal
Stochastic Processes and their Applications, 2002, vol. 99, issue 2, 195-208
Abstract:
We consider Markov chains {[Gamma]n} with transitions of the form [Gamma]n=f(Xn,Yn)[Gamma]n-1+g(Xn,Yn), where {Xn} and {Yn} are two independent i.i.d. sequences. For two copies {[Gamma]n} and {[Gamma]n'} of such a chain, it is well known that provided E[log(f(Xn,Yn))] is weak convergence. In this paper, we consider chains for which also [Gamma]n-[Gamma]n'-->0, where · is total variation distance. We consider in particular how to obtain sharp quantitative bounds on the total variation distance. Our method involves a new coupling construction, one-shot coupling, which waits until time n before attempting to couple. We apply our results to an auto-regressive Gibbs sampler, and to a Markov chain on the means of Dirichlet processes.
Keywords: Markov; chain; Coupling; Convergence; bounds; Stochastic; recursive; sequence; One-shot; coupling; Gibbs; sampler; Dirichlet; process (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00096-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:99:y:2002:i:2:p:195-208
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().