EconPapers    
Economics at your fingertips  
 

On the first birth and the last death in a generation in a multi-type Markov branching process

Lutz Edler

Stochastic Processes and their Applications, 1979, vol. 9, issue 2, 175-187

Abstract: In a multi-type continuous time Markov branching process the asymptotic distribution of the first birth in and the last death (extinction) of the kth generation can be determined from the asymptotic behavior of the probability generating function of the vector Z(k)(t), the size of the kth generation at time t, as t tends to zero or as t tends to infinity, respectively. Apart from an appropriate transformation of the time scale, for a large initial population the generations emerge according to an independent sum of compound multi-dimensional Poisson processes and become extinct like a vector of independent reversed Poisson processes. In the first birth case the results also hold for a multi-type Bellman-Harris process if the life span distributions are differentiable at zero.

Keywords: Multi-type; Markov; branching; process; first; birth; multi-type; Bellman-Harris; process; last; death; (compound); Poisson; process; generations (search for similar items in EconPapers)
Date: 1979
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(79)90029-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:9:y:1979:i:2:p:175-187

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:9:y:1979:i:2:p:175-187