Adaptive Bayesian inference in the Gaussian sequence model using exponential-variance priors
Debdeep Pati and
Anirban Bhattacharya
Statistics & Probability Letters, 2015, vol. 103, issue C, 100-104
Abstract:
We revisit the problem of estimating the mean of an infinite dimensional normal distribution in a Bayesian paradigm. Of particular interest is obtaining adaptive estimation procedures so that the posterior distribution attains optimal rate of convergence without the knowledge of the true smoothness of the underlying parameter of interest. Belitser & Ghosal (2003) studied a class of power-variance priors and obtained adaptive posterior convergence rates assuming that the underlying smoothness lies inside a countable set on which the prior is specified. In this article, we propose a different class of exponential-variance priors, which leads to optimal rate of posterior convergence (up to a logarithmic factor) adaptively over all the smoothness levels in the positive real line. Our proposal draws a close parallel with signal estimation in a white noise model using rescaled Gaussian process prior with squared exponential covariance kernel.
Keywords: Adaptive; Bayesian; Gaussian process; Posterior contraction; Sequence model (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715215001224
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:103:y:2015:i:c:p:100-104
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2015.04.012
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().