Maxima of a triangular array of multivariate Gaussian sequence
Enkelejd Hashorva,
Liang Peng and
Zhichao Weng
Statistics & Probability Letters, 2015, vol. 103, issue C, 62-72
Abstract:
It is known that the normalized maxima of a sequence of independent and identically distributed bivariate normal random vectors with correlation coefficient ρ∈[−1,1) is asymptotically independent, which implies that using bivariate normal distribution will seriously underestimate extreme co-movement in practice. By letting ρ depend on the sample size and go to one with certain rate, Hüsler and Reiss (1989) showed that the normalized maxima of Gaussian random vectors can become asymptotically dependent so as to well predict the co-movement observed in the market. In this paper, we extend such a study to a triangular array of a multivariate Gaussian sequence, which further generalizes the results in Hsing et al. (1996) and Hashorva and Weng (2013).
Keywords: Correlation coefficient; Maxima; Stationary Gaussian triangular array (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715215001170
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:103:y:2015:i:c:p:62-72
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2015.04.007
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().