EconPapers    
Economics at your fingertips  
 

An efficient monotone data augmentation algorithm for Bayesian analysis of incomplete longitudinal data

Yongqiang Tang

Statistics & Probability Letters, 2015, vol. 104, issue C, 146-152

Abstract: We introduce a new method for sampling from the Wishart distribution by representing the Wishart distributed random matrix as a function of independent multivariate normal-gamma random vectors. An efficient monotone data augmentation (MDA) algorithm is developed for Bayesian multivariate linear regression. For longitudinal outcomes, the proposed method is easier to implement and interpret than that based on Bartlett’s decomposition. The proposed algorithm is illustrated by the analysis of an antidepressant trial.

Keywords: Monotone data augmentation; Multivariate normal-gamma distribution; Wishart distribution; MCMC (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715215001716
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:104:y:2015:i:c:p:146-152

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2015.05.014

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:104:y:2015:i:c:p:146-152