EconPapers    
Economics at your fingertips  
 

Stochastic comparisons of parallel and series systems with heterogeneous Birnbaum–Saunders components

Longxiang Fang, Xiaojun Zhu and N. Balakrishnan

Statistics & Probability Letters, 2016, vol. 112, issue C, 131-136

Abstract: In this paper, we discuss stochastic comparisons of lifetimes of parallel and series systems with independent heterogeneous Birnbaum–Saunders components with respect to the usual stochastic order based on vector majorization of parameters. Specifically, let X1,…,Xn be independent random variables with Xi∼BS(αi,βi),i=1,…,n, and X1∗,…,Xn∗ be another set of independent random variables with Xi∗∼BS(αi∗,βi∗),i=1,…,n. Then, we first show that when α1=⋯=αn=α1∗=⋯=αn∗, (β1,…,βn)⪰m(β1∗,…,βn∗) implies Xn:n≥stXn:n∗ and (1β1,…,1βn)⪰m(1β1∗,…,1βn∗) implies X1:n∗≥stX1:n. We subsequently generalize these results to a wider range of the scale parameters. Next, we show that when β1=⋯=βn=β1∗=⋯=βn∗, (1α1,…,1αn)⪰m(1α1∗,…,1αn∗) implies Xn:n≥stXn:n∗ and X1:n∗≥stX1:n. Finally, we establish similar results for the log Birnbaum–Saunders distribution.

Keywords: Birnbaum–Saunders distribution; Log Birnbaum–Saunders distribution; Usual stochastic order; Parallel systems; Series systems; Majorization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216000146
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:112:y:2016:i:c:p:131-136

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2016.01.021

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:112:y:2016:i:c:p:131-136