A weighted simulation-based estimator for incomplete longitudinal data models
Daniel H. Li and
Liqun Wang
Statistics & Probability Letters, 2016, vol. 113, issue C, 16-22
Abstract:
Recently, Li and Wang (2012a,b) and Wang (2007) have proposed a simulation-based estimator for generalized linear and nonlinear mixed models with complete longitudinal data. This estimator is constructed using the simulation-by-parts technique which leads to the unique feature that it is consistent even using finite number of simulated random points. This paper extends the methodology to deal with incomplete longitudinal data by applying the inverse probability weighting method for the monotone missing-at-random response data. The finite sample performance of this estimator is investigated through simulation studies and compared with the multiple imputation approach.
Keywords: Generalized linear mixed model; Inverse probability weighting; Missing data; Simulation-based estimator (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521530273X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:113:y:2016:i:c:p:16-22
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2016.02.004
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().