A derivation of the multivariate singular skew-normal density function
Phil D. Young,
Jane L. Harvill and
Dean M. Young
Statistics & Probability Letters, 2016, vol. 117, issue C, 40-45
Abstract:
We prove the existence of a multivariate singular skew-normal density function, derive its moment generating function, and demonstrate that the skewness parameter-vector is confined to the column space of the singular dispersion matrix.
Keywords: Moment generating function; Pseudoinverse; Affine subspace; Lebesgue measure (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216300463
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:117:y:2016:i:c:p:40-45
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2016.04.024
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().