The Monte Carlo computation error of transition probabilities
Adam Nielsen
Statistics & Probability Letters, 2016, vol. 118, issue C, 163-170
Abstract:
In many applications one is interested to compute transition probabilities of a Markov chain. This can be achieved by using Monte Carlo methods with local or global sampling points. In this article, we analyze the error by the difference in the L2 norm between the true transition probabilities and the approximation achieved through a Monte Carlo method. We give a formula for the error for Markov chains with locally computed sampling points. Further, in the case of reversible Markov chains, we will deduce a formula for the error when sampling points are computed globally. We will see that in both cases the error itself can be approximated with Monte Carlo methods. As a consequence of the result, we will derive surprising properties of reversible Markov chains.
Keywords: Reversible Markov chain; Monte Carlo methods; Computation error; Measurable state space; Markov operator (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216300931
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:118:y:2016:i:c:p:163-170
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2016.06.011
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().