EconPapers    
Economics at your fingertips  
 

Likelihood based inference for partially observed renewal processes

M.N.M. van Lieshout

Statistics & Probability Letters, 2016, vol. 118, issue C, 190-196

Abstract: This paper is concerned with inference for renewal processes on the real line that are observed in a broken interval. For such processes, the classic history-based approach cannot be used. Instead, we adapt tools from sequential spatial point process theory to propose a Monte Carlo maximum likelihood estimator that takes into account the missing data. Its efficacy is assessed by means of a simulation study and the missing data reconstruction is illustrated on real data.

Keywords: Markov chain Monte Carlo; Renewal process; Sequential point process; State estimation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216301183
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:118:y:2016:i:c:p:190-196

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2016.07.002

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:190-196