EconPapers    
Economics at your fingertips  
 

Characterizing the path-independence of the Girsanov transformation for non-Lipschitz SDEs with jumps

Huijie Qiao and Jiang-Lun Wu

Statistics & Probability Letters, 2016, vol. 119, issue C, 326-333

Abstract: In the paper, by virtue of the Girsanov transformation, we derive a link of a class of (time-inhomogeneous) non-Lipschitz stochastic differential equations (SDEs) with jumps to a class of semi-linear partial integro-differential equations (PIDEs) of parabolic type, in such a manner that these obtained PIDEs characterize the path-independence property of the density process of Girsanov transformation for the non-Lipschitz SDEs with jumps.

Keywords: Non-Lipschitz stochastic differential equations with jumps; The Girsanov transformation; Semi-linear partial integro-differential equation of parabolic type (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216301663
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:119:y:2016:i:c:p:326-333

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2016.09.001

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:119:y:2016:i:c:p:326-333