EconPapers    
Economics at your fingertips  
 

A scalar-valued infinitely divisible random field with Pólya autocorrelation

Richard Finlay and Eugene Seneta

Statistics & Probability Letters, 2017, vol. 122, issue C, 141-146

Abstract: We construct and characterize a stationary scalar-valued random field with domain Rd or Zd, d∈Z+, which is infinitely divisible, can take any (univariate) infinitely divisible distribution with finite variance at any single point of its domain, and has autocorrelation function between any two points in its domain expressed as a product of arbitrary positive and convex functions equal to 1 at the origin. Our method of construction–based on carefully chosen sums of independent and identically distributed random variables–is simple and so lends itself to simulation.

Keywords: Random field; Infinitely divisible; Pólya correlation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216302462
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:122:y:2017:i:c:p:141-146

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2016.11.006

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:122:y:2017:i:c:p:141-146