A scalar-valued infinitely divisible random field with Pólya autocorrelation
Richard Finlay and
Eugene Seneta
Statistics & Probability Letters, 2017, vol. 122, issue C, 141-146
Abstract:
We construct and characterize a stationary scalar-valued random field with domain Rd or Zd, d∈Z+, which is infinitely divisible, can take any (univariate) infinitely divisible distribution with finite variance at any single point of its domain, and has autocorrelation function between any two points in its domain expressed as a product of arbitrary positive and convex functions equal to 1 at the origin. Our method of construction–based on carefully chosen sums of independent and identically distributed random variables–is simple and so lends itself to simulation.
Keywords: Random field; Infinitely divisible; Pólya correlation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216302462
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:122:y:2017:i:c:p:141-146
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2016.11.006
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().