EconPapers    
Economics at your fingertips  
 

Uniformly most powerful unbiased test for conditional independence in Gaussian graphical model

Petr Koldanov, Alexander Koldanov, Valeriy Kalyagin and Panos Pardalos

Statistics & Probability Letters, 2017, vol. 122, issue C, 90-95

Abstract: Model selection for Gaussian concentration graph is based on multiple testing of pairwise conditional independence. In practical applications partial correlation tests are widely used. However it is not known whether partial correlation test is uniformly most powerful for pairwise conditional independence testing. This question is answered in the paper. Uniformly most powerful unbiased test of Neyman structure is obtained. It turns out, that this test can be reduced to usual partial correlation test. It implies that partial correlation test is uniformly most powerful unbiased one.

Keywords: Conditional independence; Exponential families; Multivariate normal distribution; Sample partial correlation test; Tests of Neyman structure; Uniformly most powerful unbiased tests (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216302437
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:122:y:2017:i:c:p:90-95

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2016.11.003

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:122:y:2017:i:c:p:90-95