EconPapers    
Economics at your fingertips  
 

Full adaptation to smoothness using randomly truncated series priors with Gaussian coefficients and inverse gamma scaling

Jan van Waaij and Harry van Zanten

Statistics & Probability Letters, 2017, vol. 123, issue C, 93-99

Abstract: We study random series priors for estimating a functional parameter f∈L2[0,1]. We show that with a series prior with random truncation, Gaussian coefficients, and inverse gamma multiplicative scaling, it is possible to achieve posterior contraction at optimal rates and adaptation to arbitrary degrees of smoothness. We present general results that can be combined with existing rate of contraction results for various nonparametric estimation problems. We give concrete examples for signal estimation in white noise and drift estimation for a one-dimensional SDE.

Keywords: Posterior convergence; Adaptation; Series prior; Bayesian nonparametric statistics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216302930
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:123:y:2017:i:c:p:93-99

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2016.12.009

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:123:y:2017:i:c:p:93-99