Exponential ergodicity for population dynamics driven by α-stable processes
Zhenzhong Zhang,
Xuekang Zhang and
Jinying Tong
Statistics & Probability Letters, 2017, vol. 125, issue C, 149-159
Abstract:
In this paper, we consider the stochastic Lotka–Volterra model driven by spectrally positive stable processes. We show that if the coefficients of the noise are small, then this kind of pure jump stochastic dynamic has a unique stationary distribution. Besides, we prove that the rate of the transition semigroup convergence to the stationary distribution in the total variation distance is exponential. However, if the noise is sufficiently large, then this stochastic dynamic will become extinct with probability one. Computer simulations are presented to illustrate our theory. To the best of our knowledge, it is the first result to give the exponential ergodicity for population dynamics driven by spectrally positive α-stable processes.
Keywords: Lotka–Volterra model; Spectrally positive stable processes; Stationary distribution; Exponential ergodicity; Extinction (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715217300597
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:125:y:2017:i:c:p:149-159
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2017.02.010
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().